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AImrtct--The results of research concerned with a fluid mixing during the movement in a tube, are given. 
A method of definining the one-dimension theory of matter transfer, accounting for the difference of 

mixture component velocities is presented. The longitudinal transfer in a zone of "passive" fluids contact is 
discussed in detail. 

It has been possible to formulate the theory, which generalises the well-known Taylor and Aris models. 
The theory presented is based on the integro-differential equation, accounting for the delay effects. It has 
been possible to describe the experimental facts, which had no explanation so far, in bounds of the given 
theory. 

1. INTRODUCTION 

The theory of longitudinal matter transfer in a flow through a tube (Taylor 1953, 1954) is based 
on the diffusion equation with some virtual coefficient different from the molecular coefficient. 

It follows from this theory that dispersion is growing with time by the linear law. But the 
experimental data (Bailey & Gogarty 1962) show that for time spans • ~ 1 dispersion is growing 
much more slowly than in the theory. 

An attempt to correlate the theory and the experiment for ~-~< 1 by including a virtual 
coefficient dependence on time has been presented by Gill & Sankarasubramanian (1970). 

Such an approach is not satisfactory from the viewpoint of model construction methods. In 
Taylor's theory the virtual coefficient depends on parameters (U o, R, D) and results m the 
universality of the model. Including the time-dependent coefficient in the model limits its 
application to some unknown category of problems for which the adopted dependence is true. 
The experimental results cast doubt on Taylor's model, based on the diffusive transfer equation. 

2. ONE-DIMENSION EQUATION OF MATTER TRANSFER 

During fluid mixing in a tube local convective and turbulent diffusion processes form a 
mixture zone, in which the fluid concentration is smoothly changing in length and is almost 
constant in the flow cross-section. This is the reason for using mean concentrations instead of 
local ones for describing the mixing process. 

Each of the mixing fluids is assumed to fill the whole area of joint flow continuously, that is, 
it presents a continuum with its own clensity p~ (i = 1, 2) and mean tube cross-section velocity vi 
(i = 1, 2). 

It has been shown by experiment that in mixing fluids with volumes Vt and Vz a mixture is 
obtained the volume of which is fairly accurately equal to the sum of component volumes, i.e. 

V, = V, + V2. [1] 

It will be noted that the property of volume keeping in mixing does not take place for all 
fluids. 

Volume concentrations 0, and 02 are introduced for each component according to formulae 

VI V2 
0 1 = ~  and 02=V---ss. [2] 

It follows from [l] that 

01 + 02= !. [3] 
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Using volume concentrations and true densities of fluids it is possible to calculate the 
reduced densities #0 and #2 °. We get 

plo = p ~ y l =  pt . Or, #2 ° p2 V2. - s  = Vs = 0 2 '  02. 141 

Mass conservation equations for each component are 

OP~---~°+ ap°v~= O, (i = 1,2). 151 
at ax 

Using [4] and [5] the equations for the volume concentrations of mixture components are 

written as 

a0--2+ aOiV'=o, (i = 1,2). [61 
at ax 

Adding the L.H.S. of these equations and taking into consideration[3] we get 

a 
aX (OlVl + 02V2) --'-- 0. [7] 

Hence it follows that 

0tel  + 02l)2 = Uo. [81 

Velocity Uo does not change along the tube and is equal to the mean velocity of particles in 

the uniform part of the flow. Equations [6] are written as follows 

a0/+ . aOi a Ji, L = (vi - U0)0i. 19] at Vow= 

Here J~ (i = I, 2) is the mean tube cross-se:tion flow of matter of the i-th component in the 

movable coordinate system, moving with velocity U0. It is easy to show that Jt = - J2. 

3. FORMULAE FOR CALCULATING MATTER FLOWS 

Values Ji are calculated by means of local matter flows. With this aim in view local volume 

concentrations Ci and velocity vectors of mixture components W~ are introduced. 

The local flows consist of the convective and diffusive flows and are equal to 

q~ = WiCi - *~VC~, i = I, 2. [10] 

¢~ are the local matter-transfer coefficients. The projection of vector qi on axis x is equal to 

0C~ qxi = ui" C i -  ~i a--X- ' Ui = W,,, i = I, 2. [111 

The same flow calculated in the movable coordinate system is equal to 

OC, 
q x i = ( u i - U o ) C i - ~ i - ~ x ,  i =  1,2. [12] 
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The mean tube cross-section value of this flow is equal to J~. We get 

l ] i= -~ fJ  q~,do,=~fJ(u,-Uo)Cido'-~fJe,~-ffdo', i= 1, 2. [131 

These formulae are used for calculating flows J~ in [9] when local concentrations C~ and 

profiles of longitudinal components of velocities u~ are known. 

4. A N  E Q U A T I O N  F O R  L O C A L  C O N C E N T R A T I O N  

Let us consider simple conditions for two fluids flowing in a tube when the calculation of a 
matter flow is not difficult. The mixing fluids are taken to have identical densities and 
viscosities. In this case mixture density and viscosity are constant. It is supposed that the flow 
temperature is independent of the space coordinates (the temperature can change with time). 

The assumption of the constancy of temperature and density of fluid particles in the mixing 
area enable us to exclude from our consideration the natural convection processes in the field 
of forces of gravity and to limit the study by the forced convection and the diffusive 
matter-transfer. 

In the case under consideration the vector of movement velocity has only one component 
along the tube different from zero, which is the same for both mixture components, and the 
transfer coefficients e~ are also equal. The diffusion equation for one of the mixture components 

is 

OC . .  oC 1 0 / oCx 02C 
~-~ + utr, ~x = r ~ ~ ~ rpe(r) "~-~_1 + e(r; 

x , o r /  
C = C(t, x, r). [14] 

Here p is the symmetry factor. In a flat tube p = 0 and in a round tube p = 1. 

The mass flow on the inner tube surface is equal to zero, 

-•rC[,.R = 0. [151 

The corresponding initial and boundary conditions on t and x should be added to the above 
conditions. 

5. LAMINAR FLOW IN A ROUND TUBE 

In this case the transfer coefficient e(r) is constant and equal to the molecular diffusion 
coefficient D. Factor p = 1. Dimensionless variables of the following kind are introduced, 

D t  x r 
= ~-~, 6 = ~ ,  ~) = ~ .  [16] 

Using these variables, [14] and [15] are rewritten as follows 

8C+ 8C 1 8 Y¢(~)~-~ -~-~(*1 aC'x a 2C - -  

y=UoR 
C=C(~,6 ,  n), ~'>0, 0 < n < l ,  - o o < a < 6 < b < ~ .  [171 D ' 

~(r, 6, aC 1) = ~ ('r, 6, 0) = 0. [181 
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The initial condition is taken as 

C(0, ~:, 7) = 0o(se) • [191 

This condition, in which the initial function depends on ~ only, is similar to the condition taken 
by Taylor and other authors. 

One-dimension equation [9] is rewritten taking into account [13] (notation i is omitted): 

O0 00 0 f l  020 
- +  2r jo - " 0r Y ~ =  ~,  ((1)('q) l ) C .  d n +-~, 

[20] 
# = O(r,~), r>O,  - o o < a < ~ < b <  +~. 

FunetioR ~(¢. ~, ~0 equal to the difference between the local and mean concentrations 
-- C -  0 is introduced. Combining the addends of [17] and [20] we get the following equation 

for this function 

O fo' n a~ -~°C+ ~';a2~ 0 ,  1 0 :  0,\=2y  ~ ~ l  n-F~-n) (~(n)- I ) , .  an - r(~(n)- I) [211 

5.1 Solution of [21] 
This equation is solved by the successive approximation method when considered as a 

non-homogeneous equation with a free member in the R.H.S. As a null approximation we take 

~I' = 0. This approximation is substituted into the R.H.S. of the equation. We get 

0xI t 1 8 [ 0xI/~ 00 
= - Y ( O ( n ) - l ) ~ - ~ .  [22] 

Or 

The solution of the equation satisfying the following initial and boundary conditions is 
sought 

o:(0, ~, ~)=  0, ~ ( r ,  ¢, 1) = ~ ( r ,  ~,0) = 0. [23] 

The solution is represented as a series 

*(r ,  ¢, 7 )=  ~ u,(r, ¢) X,(~), IX, U 2= r t  X.2(~)" ~ d~. 
rim| ~ * J0 

[24] 

Here X,(,1) are eigenfunctions of the following Sturm-Liouville problem 

(~/X'(~))'+ A,2nX,(,I) = O, X'(O) = X~(1) = O. {25] 

Function ~(r, ¢, 7) defined by series[24] is substituted into [22]. Then the L.H.S. and the 
R.H.S. of [22] are multiplied by ~/X,(~) and are integrated by ~ within the bounds of from 0 to 
1. Taking into account the orthogonality of Eigen-functions X,(,1) and boundary conditions[23] 
we get the following equation for defining functions u,(r, ~) 

- ~ ' +  A,2u, = - Y~.fo'(Cl~(n)-l)~X,(n)dq. [26] 
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According to the initial condition for *(¢, ~, ,/) function u.(¢, ~) is equal to zero when ¢ = 0. 

u.(~,O=O. [27] 

The solution for function u.(¢, 0 is 

fo" O0 u.O', ~) = - a . Y .  exp [-,~.20" - s)] ~-~ (s, ~) ds, 

/o' a. = (4)(n)-  l )nX.(n)  dn. 

Using these equalities we get[24] as 

,,,G a.X.(,~) f" ao 
q,(., ~, ~) = - .~.~ ~X-~-~r-[ jo exp [-,t.2(¢ - s)] ~-~(s, Ods. 

[28] 

[29] 

5.2 One-dimension model of mass transfer 
The approximate solution found above is used for developing one-dimension equation for 

mean mixture concentration 00", O. Equation [29] is substituted into the integral addend in 
the R.H.S. of [20]. We get 

c10 + 00 020 ± ,~v2 ~ .  an 2 ~'" 020 
-~ Y-~=-~- , - ,~I  ,=~[~-~-~,~ J0 exp[-A"20"-s)]'~ (s'~)ds' 

0=00",~) ,  *>0 ,  - o o < a < ~ < b < + o o .  
[301 

This equation includes only one unknown function 00", 0 and describes the longitudinal 
matter transfer in a laminar flow of a newtonian or non-newtonian fluid in a round tube. It can 
be represented as 

aO+ ao (1+2Y2  ~, an 2 ~a20 

_2y2 ~ ~, a : (a for 020 ,,.,~,~-'~~-~ -~ exp[-,L,20"-s)]"~(s, Ods. [311 

This equation is different from the diffusive transfer equations (Taylor 1953; Ads 1956). This 
difference is in the integral addend in the R.H.S. of [31]. This addend is connected with the 
delay effects of concentration alignment in the tube cross-section. That is why the integral 
addend disapI'..'ars when ~---,o0 and [31] becomes the diffusion equation of the following kind 

® 2 
Y ~ = -~ -~,  -~ = [32] 

Here K/D is the dimensionless virtual coefficient. Hence Taylor's diffusion coefficient is equal 
to 

K ,~ x,,2 ~ an 2 
[33] 
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When ¢-~0 the diffusion equation follows from [31] 

80+. 00 820 
r~: ~, 0 = 0(¢. ~). [341 

0-~ 

It follows from [34] that even at Pe ~>1 (Pe = 2Y) when Taylor 's  diffusion coefficient is 
much larger than the molecular one there exists a range of • values where the molecular 
diffusion cannot be neglected. The same result is received in the paper (Ananthakrishnan et al. 
1965) by a numerical solution of [14]. 

5.3 Calculation of a, 
The solution of the Sturm-Liouville problem has the form 

x.(n) = Jo(,~.~). [35] 

Here Jo(it.rl) is Bessel's function of the first power, ,~n is the positive root of equation J,(A) = O. 

We get 

i ix.i i  ~ = ~ So=(,~.) • [361 

For calculating an coefficients the velocity profile must be defined. For a large class of media 
including the newtonian fluids, the velocity profile can be taken as 

3m + 1(1 _ r/(,.+,/,.). [37] 
~ (n )  = m .4- 1 

Here m is the power factor in the power rheological law. When m = l, the velocity profile is 

parabolic. Using [35] and [37] a,  can be written as 

3m+! ~ f  ° ' an = ~ "  J,(Ann) • 71 (m÷'/"~ d~. [38] 
m 

When m = 1, [38] is simplified to 

= - ~ Jo(A,). [39] an 

5.4 Calculation o/ virtual coefficient 
Let us take m = 1, then 

K i + 6 4 Y 2 ~ i  [40] 
O n= 1 An 

It has been shown (Watson 1922) that 

1411 
~-J2' ~ = 3072" 

Therefore 

- -  = L U°2R2 [42] 
K i +  48 y 2 =  I + ~ _ _ _ D / _ "  
D 
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The virtual coefficient has precisely this value in the Taylor-Aris model general[sing Taylor's 
model for small values of Y - i. In Taylor's equation this coefficient is equal to ~ y2. At m ~ 1, the 

virtual coefficient is represented as 

K = 1 + G(m)Y2, 
D 

G(m) = 4(~.~_.~)z. ~ b.2 

Io' b. = Jl(A.~) " ~,.+l)/,. dr/. 

[43] 

The value of factor G(m) is shown in table 1 for different values of m. 

Table 1. 

m 5 2 I 0.9 0.7 0.5 0.3 0.1 
G(m) 0.0303 0.0260 0.0206 0.0196 0.0171 0.0143 0.0094 0.0026 

It is evident from the table that the value of factor G(m) in [43] quickly decreases with 
decreasing of m. It means that the sizes of mixture area in a pseudo-plastic fluid flow will be 
less than these sizes in newton[an and dilatant fluid flows. 

6. MASS TRANSFER MODEL IN A NEWTONIAN FLUID 

Equation [30] is written for the newton[an fluid flow m = I. We get 

+ °° fo" r~-~ = + y2 W0" - s) (s, ~¢) ds, 

0=00- ,~ ) , ¢>0 ,  - o o < a < ~ < b < + o o  [441 

n= ~ ~n --~n2T W0") = 64 ~ exp ( ). 
I 

This equation generalises the well-known Taylor and Taylor-Aris models in the sense that 
these models are obtained from [44] when ¢--* oo. It is interesting to note that [44] has no virtual 
coefficient. 

When function 0(¢, ~) satisfies [44], its dispersion changes by the law 

1 y 2 ) ¢ _ 6 4 y 2 ~  l - e x p ( - A , 2 ¢ ) ]  ° '2=2[(1+~ .., A, j [451 

We took ¢(0) = 0. 
Chatwin (1970) got a similar law for dispersion depending on time by another method using 

some particular assumptions. 
As was done by Taylor, the length of the mixture area is defined in the following way 

l, = 2.56o'. [46] 

Using this formula and the expression for dispersion[45], the calculations of the mixture 
area length have been made for the first series of experiments (Bailey & Gogarty 1962). The 
results of the calculations are shown graphically in figure I. A dotted line in the same figure 
shows the results of calculations on the basis of Taylor's model with the linear law of 
dispersion and the experimental data. The comparison of the curves and experimental data 
gives credence to the suggested theory. That is why model [44] can be used for describing the 
process when ~- < 1, where Taylor's theory is not true. 
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Figure 1. The continuous line shows the calculations on the basis of the author's theory. The dotted line 
shows the calculations on the basis of Taylor's theory. O--shows the experimental data (Bailey & Gogarty 

1962). 

The fact that the given model is close to Taylor's model when ¢-* oo enables us to estimate 
the limits of application of the latter. To do that for parameters Pe and ¢ the equation for the 
velocity of dispersion change is used. 

d°'___~ = 2[1 +64Y2 ~ 1 -exp  (-A.z~')] 
dr . = i A, 6 J" 

[47] 

The first addend in square brackets of [47] describes the molecular diffusion contribution into 
the longitudinal transfer, and the second addend, the contribution of Taylor diffusion. The 
contributions of both diffusive processes would be the same if the condition 

6 4 Y 2 ~  l - e x p ( - A , 2 ¢ )  I 
n ~ I )in 6 

is satisfied. 
For the small typical time moments, when A 12~ " ,~ 1, this condition can be rewritten as 

[48] 

O l  
64Y21"~= A. ~ 1. [491 

It follows from [49] that 

Pe  ~ 3 .66.  ~.-u2, Pe  = 2 Y. [50] 

The same estimate can be obtained when mixture areas formed by the admixture particles 
moving and formed by the molecular diffusion along the axis are taken to have the same 
lengths. We get 

2Uot  l ~ P e  ~ 3.62¢ -In. [5 !] 
3 . 6 2 ~  
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To make the contribution of Taylor diffusion the main and the molecular one neglectable the 
following inequality should be taken 

64Y2 ~ 1 - e x p ( - A ~ r ) ~  [52] 

At r ~ oo, Taylor's condition Pe ~" 13.8 follows from this inequality. 
Taylor (1954) had taken the axial molecular diffusion be neglected under this condition. But in 

fact the problem is more complex. It has been shown above that at any Pe number there are such 
time values ~ for which the molecular' transfer plays the main part. 

7. LAMINAR FLOW IN A FLAT CHANNEL 

In this case the symmetry factor p is equal to 01 Under this condition the transfer model 
developing of which is similar to that of [30], has the form 

ao .ao o2o + 1 y 2 .  ~, a, 2 " 020 ~ +  0r 1 " - ~ = - ~  ] z ~ . , ~ f o  exp[ -An2( r - s ) l - ' ~ ( s , f )d s  [531 

O=O0",se), r > 0 , - ® < a < ~ < b < + o 0 .  

Here 

Dt x, r Uoh "=-~' ~=-~ '1=~ ' ~'=-6" 

2h is the channel height. 
The eigenfunctions X.(q) satisfy the following Sturm-Liouville problem 

x~(n)+ A)x.(n) = o, x'(-t) = x~(t) = o. 

It is simply shown that 

I54] 

an coefficients are equal to 

X,,(~) = cos ,~.(I - n), 
11" 

~n = ~ n ,  n = 1 ,2 ,3 . . .  

f l 
n x ,  II 2 = x.2( ,~)  d,7 = l 

I 

f a, = (~(T/) - 1)X,(-q) dn. 
I 

The velocity profile in the newtonian fluid flow in a flat split has the form 

~(~) = ~(1 - v/z), - 1 ~ 1 .  

For this velocity profile we have 

a. - - ~-~ (l +(-I)'). 

[551 

[56] 

157! 

[58] 
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6 6 
az, - t=0,  a2, = -~--~_,,= - - - - ~ ,  k = 1 ,2 ,3 . . .  

Taking into account [55] and [591, [53] is represented as 

oo÷voo lfo" a--r a ¢ = ~ + ~ - ~  ,=, ~ exp [ -  k2rr2(r- s)] (s, ~) as 

0=0(r ,~) ,  r>O, - o o < a < ~ < b < + o o .  

At r.-,oo, The 

diffusion equation of the following kind 

[591 

[60] 

solutions of this equation are asymptotically close to the solutions of the 

aO+ aO ( 1 8 y 2 ~ 1 " ~  d20 
Or Y O-~= l+--g t~_~ k6] .- ~ .  161] 

The second addend in round brackets is equal to &function for the argument equal to six. 

~ 71.6 
~ = ~'(6) = 9--~' [621 

The equality of the virtual coefficient value for flow in a flat split to 

K 2 
= ! + i-~ Y~' [63] 

follows from [62]. 
The same expression is represented by Philip (1963). 
The dispersion of function O(r, ~) for [60] is equal to 

o "2=2 [ [ 1 +  2 vz'~ 18 y Z ~  i-exp(-kZ~z2r)] 
tk 

8. APPROXIMATION OF [44] 

It has been shown above that the solutions of [44] are asymptotically close to the solutions 
of diffusive equations [32] and [34], when r-- ,~ and r ~ 0  respectively. Another approxima- 
tion will be shown below for the same [44]. 

With this aim in view the movable coordinate system z = ~ -  ~- is considered and function 
W(r) is approximated in the following way. 

64 
W(r) -~ -~ exp (-A,2~-). 

In this case [44] without the addend a2010~ 2 will have the form 

00 64 fo" 02B ~- = ~ Y~ exp [ - ~ ( ~  -'s)]~-~z (s, z) ds. 165] 
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This equation can be rewritten as 

020.~.  2 0 0  64 v2020  
^ 'T , -H"  (M = 3.83). [66] 

Equation [66] is known as a telegraph equation. The final velocity of the admixture spread 
equal to 0.75 Um~ follows from the solution of this equation. This result has a physical meaning 
because the velocity of the admixture particles cannot be larger than the velocity on a tube axis. 
The indefinite velocity of disturbance spreading follows from Taylor's model. The telegraph 
equation has already been applied to describing the heat and matter transfer (Goldstein 
1951). This equation is free from those paradoxes which follow from the solution of the heat 
conductivity type equation. 

9. TURBULENT FLOW IN A ROUND TUBE 

In this case the local diffusion coefficient ~(r) is different from the molecular one and is 
changing along a tube cross-section. It is equal to 

• (r) = D + D,(r). [67] 

Here D,(r) is coefficient of the turbulent diffusion. 
The dimensionless variables are introduced 

Eot X r 
• = ~-a, ~ = ~ ,  W = ~ .  [68] 

Here c0 is the characteristic value of c(r). 

When an axial diffusion which is an order less than Taylor's one in a turbulent flow, is not 
taken into account, the transfer equation can be represented as 

00 . 00 ~ v , ~  a~ 2 02 
exp [-A.2(, • - s ) l -~ ( s ,  ~:) 

UoR 
Y,= , 0=0(*,0, *>0, -oo<a<~<b<+oo, [69] 

Eo 

for function 00", O. 

a. coefficients are calculated by means of [28]. However eigenfunctions X~(Vl) in [28] 
satisfy the following Sturm-Liouville problem 

( ,1 , . (~)X'( ,1)) '  + ~.',X.(,) = 0. 

e(, l)  
X~(0) = X~(l) = 0, c ,  = - -  

Co 

[70] 

9.1. Calculation o f  a. coeBicients 

Using [70] a. is represented as follows 

[71] 
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Coefficient 19, of turbulent diffusion is calculated by means of formula 

D,(rD = - u{Rvl (¢,(n))_1, 
u o  

u ,  is the friction velocity. Hence 

[721 

D u,2R~ 
~,  = (~,(~))-i.  [73] 

Co Uot[o 

This expression is substituted into [71]. We get 

[741 D fo I u ,2R a,, = ~ r t X ' ( n ) ¢ '  (~) d~ - ~ X,,(1). 

The value of D/co is estimated. The typical value of the transfer coefficient Co can be taken 

as ~ o -  u ,R .  Then 

D D 1 I Sc v u , R  
~o u , R  Sc R e , '  -~ ,  R e . =  v 

v is the kinematic viscosity. 

The first addend in [74] can be neglected for media where Sc ~, 1. Then 

_ u , Z R  
a. = EoUo X.(l) .  [75] 

Hence the dependence of K/co virtual coefficient defined by [33] on X.( I )  only and its 
independence of the velocity profile kind follows. 

10. FLOW IN AN OPEN CHANNEL 

The local transfer equation keeps the kind of [14] in this case if p = 0. The dimensionless 

variables are introduced 

¢ot x . r u , H  
* = ~ '  ~ = n '  n = n  ' Y*= ~o 

Here H is the depth of the channel. 
The dimensionless velocity profile is taken to be equal to 

~ (n )  = U + 1 [%/( I - ~ ) + In (1 - %/(1 - ~ ) ] .  [76 ]  
U* X 

Here U is velocity on a free surface, X = 0.3. 
According to [72] the turbulent u'ansfer coefficient is defined as 

D,(vl) = 2 x u , H ( l  - ~ ) .  (I - ~ / 1  - ~). [77] 
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The typical value of ~o diffusion coefficient is taken to be equal to the mean value of e(~). Then 

Io' • o = ~(~l) d~ = D + O.06u,H. [78] 

The one-dimensional model for function 00", ~) has the form 

O0 00 - 2 ~'~ d. 2 f" 020 
--Or + Y* 0"~ = Y, 2,1 ~-~ll • jo exp [ -  A.2(r - s)] ~-~ (s, ~) ds. 

0=00",~),  ,r>O,-oo<a<~'<b<+oo. 
[79] 

Under this condition aº coefficient is equal to 

It is simply shown that 

Hx.II = = ~. [82] 

_ u , H  A~D ' 
1 + ~  a" - A.-~o ( u , H  fo O'(~)sinA.t/d~). 

fo' ~fo ' sin~ • '(~/) • sin A.~? • d~/= d~ -~ 3.1. 
1 - V 1  - ,! 

10.1. Calculation of  virtual cot~icient 
The virtual coefficient is equal to 

K = y , 2  ~ !  a'2 

for model [79]. 

[83] 

[84] 

problem. In this case we have 

X.(,/) = cos n ~ ,  ~. = n~r, 

n =  1 ,2 ,3 . . .  

a. coefficient is equal to 

D i u , H  
a. = ~ . ~ f o  ~ ' ( ,7)x~(~)  d,7 - ~ - ~  • X.(0). [80] 

Eigen-functions X.(~) satisfy the following Sturm-Liouville problem 

(~,(,1)X'(,1))' + A.2X.(,1) = o, x ' ( o )  = x;,(1) = o. 

181] 

/o' IIx.g ~= x~n)dn .  

The difficulty in solving [81] is connected with the dependence of radial diffusion coefficient 
~(~) on ~. The experiments enable us to estimate the nature of this dependence, e(~) coefficient 
is almost constant in a core of turbulent flow which occupies the main part of tube cross- 
section. Such a dependence of E on ~ gives the reason to take the value of e(~) to be constant 
and equal to the mean value of fo as the first approximation when solving Sturm-Liouville 
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Using the expressions found above we get 

K 2 y , 2 . ~  u , ~ H " (  +3.I.A,D~ z - - =  ~ I 
~,, .= t  u , "  H ] "  

{851 

Because of the fast increase of A. eigenvalues it is possible to write down approximately the 
following 

2 K _. 2 u * ' H  ( 3.11r13~ 2 
~ o = 2 r ,  ~ 1+ u , H : "  

As a result of simple calculations we get the following expression 

K =9.8(1+ 9.7 ~' (1+ 12.5 ~ 
u , H  Sc'. R e , /  " S c - R e , ]  ' 

R e ,  = u , H / u  

186] 

If the molecular transfer is neglected we get 

K 
~ = 9 . 8  1871 
u , H  

10.2. Admixture  dispersion 

An admixture dispersion for model [79] is subject to the following law 

tr2= 2 y ,  2 ~ ~ [ : r  - 1  - exp (-A,2r)~ 
.=t A,'IIX,U'\ A~ ~ ]" 

1881 

Because of the fast increase of X, eigenvalues, {88] are represented as follows 

~ 2 = 2 v ,  2 e _ _ , ~  - ~2 i -~0~ - ,,- 
[891 

It has been shown by Taylor (1921) that the admixture dispersion could be found from the 

following equality 

~0 I' d°'-'-~2 = 2 R(s) ds. [90] 
dt' 

Here R(t ' )  is the coefficient of Lagrange correlation. When t'--)oo the dispersion increases 
proportionally to time t'. When t' is small the dispersion is proportional to the square of time t'. 

In a previous paper (Sullivan 1971), function R(t ' )  is taken as 

,. b • A t' u , t  
R( t  )= ~ , H  exp ( -b t ' ) ,  =--~-.  [911 

Here b is constant. 
For function R(t ' )  dispersion is equal to 

A (t' l-ex~(-bt') 1 [92] 
cr 2 = 2 u , H \  - • " 
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Sullivan has given the following values for b and A: when R e .  = 500, b = 0.536, A = 

I l u , H .  

It has been simply noted that the dependences [89] and [92] are the same. Equation [89] is 

rewritten for time t'. We get 

Cot e o . ,  {__D_D +006~t '  1 , • = = ( S - ~ e ,  + 0 .06) t .  ~ = u - - - - , ~ '  = \ u , / /  " / 

This relationship is substituted into [89]. 

o r 2 = 2 A ( t ,  l - e x p ( - b t ' )  ~ 2 1 t, / '  b = ~r (S--b-R~e, + 0"06)" [93] 

For Re.=500 the following can be taken b ~-~r 2" 0.06= 0.59, K =9.8.H. These values 
calculated on the base of the given theory, are close to those shown by Sullivan (1971). 

II. E F F E C T  OF THE INITIAL CONDITIONS 

So far when deriving a one-dimension equation for function 0(¢, 6) an agreement of the 
initial conditions for this function with local concentration C(¢, 6, ~/) was assumed, that is, 
C(0,6, ~)=  00(6). In this case the initial condition has the form u.(0, 6)= 0 when defining 
functions u.(¢, 6). If the initial distribution for CO, 6 '7) depends on variable ~/then u,(0, 6) = 
u~°(6). Subject to this condition the solution of [26] is found as 

f " 2 00 
//n(7, 6) = u°(6) exp (-~,.21-) - a n Y ]  exp [-Xn (¢ - s)]-z;(s, 6) ds. 

30 
[94] 

Hence the one-dimension equation for 0(¢, 6) has the form 

O0 _ O0 - -  ~-, an au. ° - - +  0~" r ~  + 2 r A IT~,I[ - ~ "  exp (--~'n2'r) 

° ° v tan fo = - ~ + ~ x  ~,llx-'x~.l" exp[-xnz(r-s)I  (s, Ods. [95] 

An additional addend occurs in this equation which is absent in [30]. This addend decreases 
with time as exp (-A,2~-). That is why the form of the asymptotic model is the same as [32] 
when ~--~®. It will be noted that in Taylor's theory it is impossible to take into account the 
disagreement of the initial conditions. At the same time the consideration of such a dis- 
agreement seems to be important when analysing the experimental data. For example when a 
matter portion is injected into the flow it is difficult to reach the uniform distribution of matter 
along the tube cross-section. That is the reason for the local concentration depending on two 
space variables C(0, 6, '7) = Co(C, T/) at moment ¢ = 0. If function Co(C, ~) is defined then 

fo I un°(6) = Co(C, T/)Xn(~) • ~/d~/. [96] 

12. RADIOACTIVE ADMIXTURE DISPERSION IN FLOW IN A TUBE 

Description of radioactive admixture concentration is connected with consideration of the 
radioactive decay phenomenon. That is the reason for the one-dimension model of diffusion being 
different from [30]. This difference is not only in the additional addend accounting the radioactive 
decay but in the dependence of virtual coefficient on the decay constant. The one-dimension model 
in this case has the following form 
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case has the following form 

0O o320 ~ a. 2 f" 03_08 + y "~ + ro y2 2 0320 03¢ =-f~r+ ~ , ~ J 0  exp[-(~. +r)tr-s)lT~r(s, Ods, 

0=0( r , ( ) ,  ¢>0,  - o o < a < s e < b < + o o  

(fl half-life period). 

F - f iR2  
D 

[971 

The virtual coefficient is equal to 

K 1 + 64Y2 ~ ,  i 
= + A. -2 .  r)" 

[981 

Hence this coefficient is less than Tayior's. 
When r--* oo the admixture dispersion is equal to 

~,2 2K 
= ~---~[1 - exp (-  F¢)]. 1991 

The dispersion change law differs from the linear law as it takes place for non-radioactive 
admixture. 

CONCLUSIONS 

The suggested theory can he generalised on the description of newtonian and non-newtonian 
media mixing in more general cases, in capillary-porous systems, in particular (Nikolaevskii et 
al. 1968; Maron 1974). Such a generalisation presents considerable interest for a series of 
chemical technology processes and for the chromatography theory. An agreement of the mass 
transfer theory in laminar flow in a round tube with the experiments (Bailey & Gogarty 1962) 
enables us to recommend it when r ~ 1. Developing of mass transfer models in turbulent flow is 
connected with defining function e(7/) and solving the corresponding Sturm-Liouville problem. 
For the models shown the third distribution moment defining the asymmetry is equal to zero. 
To specify this result it is necessary to find the next approximate solution of [21] and to apply it 
to defining model [30]. 
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